On one interpolating rational process of Fejer – Hermite

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Hermite-fejer Type Interpolation on the Chebyshev Nodes

ON HERMITE-FEJER TYPE INTERPOLATION ON THE CHEBYSHEV NODES GRAEME J. BYRNE, T.M. MILLS AND SIMON J. SMITH Given / £ C[-l, 1], let Hn,3(f,x) denote the (0,1,2) Hermite-Fejer interpolation polynomial of / based on the Chebyshev nodes. In this paper we develop a precise estimate for the magnitude of the approximation error |£Tn,s(/,x) — f(x)\. Further, we demonstrate a method of combining the dive...

متن کامل

Rational Hermite–fejér Interpolation

In this paper we construct rational orthogonal systems with respect to the normalized area measure on the unit disc. The generating system is a collection of so called elementary rational functions. In the one dimensional case an explicit formula exists for the corresponding Malmquist–Takenaka functions involving the Blaschke functions. Unfortunately, this formula has no generalization for the ...

متن کامل

Hermite Orthogonal Rational Functions

We recount previous development of d-fold doubling of orthogonal polynomial sequences and give new results on rational function coefficients, recurrence formulas, continued fractions, Rodrigues’ type formulas, and differential equations, for the general case and, in particular, for the d-fold Hermite orthogonal rational functions.

متن کامل

On new inequalities of Hermite–Hadamard–Fejer type for harmonically convex functions via fractional integrals

In this paper, firstly, new Hermite-Hadamard type inequalities for harmonically convex functions in fractional integral forms are given. Secondly, Hermite-Hadamard-Fejer inequalities for harmonically convex functions in fractional integral forms are built. Finally, an integral identity and some Hermite-Hadamard-Fejer type integral inequalities for harmonically convex functions in fractional int...

متن کامل

The Lebesgue Function for Generalized Hermite-fejer Interpolation on the Chebyshev Nodes

This paper presents a short survey of convergence results and properties of the Lebesgue function kmn(x) for (0, 1 , . . . , m) Hermite-Fejer interpolation based on the zeros of the nth Chebyshev polynomial of the first kind. The limiting behaviour as n -*• oo of the Lebesgue constant Amn = max{Xm n(x) : — 1 < x < 1} for even m is then studied, and new results are obtained for the asymptotic ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

سال: 2020

ISSN: 2524-2415,1561-2430

DOI: 10.29235/1561-2430-2020-56-3-263-274